Conservation of mass

Conservation of Mass

- An unknown Hydrocarbon, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$, When
3.90 grams of this hydrocarbon is placed in a 3.00Liter container and heated to 800 K , no liquid remains and the pressure becomes 1.58 atm.
- This is a VERY common start to a typical AP problem.

General progression of question

- Empirical formula
- Molecular Weight $\xrightarrow{\square}$
(Molar mass)

Needed to convert
to Empirical to molecular!

- Molecular formula

What is the molar mass?

- The molar mass is a very common value.
- It can very often determine the identity of the substance.
- It is a ratio of the mass per mole or mass per individual
- We need two pieces of information.

1. Mass
2. Moles

Finding molar mass

- Mass $=3.90 \mathrm{~g}$ Given in the problem.
- Moles:
- In this case we are going to use PV=nRT to solve for the moles.
- This is a common Gas Law that you will be expected to use from day 1.
- Solve for $n=P V / R T$
$-\mathrm{P}=$ pressure (1.58 atm); $\mathrm{V}=3 \mathrm{~L} ; \mathrm{R}=.0821 ; \mathrm{T}=800 \mathrm{~K}$
- n: . 0721 moles

Lets Calculate the molar mass

- $3.90 \mathrm{~g} / .0721$ moles $=54.09 \mathrm{~g} / \mathrm{mol}$

Problem continued?

- The unknown gas is burned, producing a mixture of $76.5 \% \mathrm{CO}_{2}$ and $23.5 \% \mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the hydrocarbon?
- $1^{\text {st }}$ they did not give us the total mass of the end product but in this case the sample size does not matter. Set it at 100g.
- Plan: mass = moles = simplest ratio atoms

$$
\begin{aligned}
& \text { What is the equation? } \\
& \mathrm{C}_{?} \mathrm{H}_{?}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

No mass is either gained nor lost we are simply rearranging the atoms.
C: ALL the carbon in the hydrocarbon is now in the form of Carbon Dioxide.

H: All the Hydrogen is in the form of water.
O: It is possible for your unknown to also contain Oxygen. Where does it end up?

$$
\mathrm{C}_{?} \mathrm{O}_{?} \mathrm{H}_{?}
$$

Where's the carbon?
 $\mathrm{C}_{?} \mathrm{H}_{?}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- $76.5 \mathrm{~g} \mathrm{CO}_{2}$
- If you determine the number moles of CO_{2} then that would equal the moles of C in the beginning. (There is 1 carbon in every CO_{2})
- $76.5 \mathrm{~g} \mathrm{CO}_{2} / 44 \mathrm{~g}=1.73$ moles $\mathrm{CO}_{2}=\mathrm{C}$

Where's the Hydrogen? $\mathrm{C}_{?} \mathrm{H}_{?}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- $23.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
- $23.5 \mathrm{~g} / 18=1.305$ moles $\mathrm{H}_{2} \mathrm{O} * 2=2.61$ moles H
- The H is doubled because there is 2 H in water.

Simplest Ratio

- C: 1.73 moles
- H: 2.61 moles
- Divide out by the smallest. Set to 1
$-\mathrm{C}=1$
$-H=11 / 2$
- Multiply by reciprocal of fraction
- $\mathrm{C}_{2} \mathrm{H}_{3}$

What is the Molecular formula

- The empirical formula is some ratio of the actual formula or molecular formula
- $\mathrm{C}_{2} \mathrm{H}_{3}=27 \mathrm{~g} / \mathrm{mol}$
- $\mathrm{C}_{4} \mathrm{H}_{6}=54 \mathrm{~g} / \mathrm{mol}$
- $\mathrm{C}_{6} \mathrm{H}_{9}=81 \mathrm{~g} / \mathrm{mol}$
- We calculated the molar mass earlier to be $54 \mathrm{~g} / \mathrm{mol} \mathrm{C}_{4} \mathrm{H}_{6}=54 \mathrm{~g} / \mathrm{mol}$

